图形卷积神经网络(GCNN)是材料科学中流行的深度学习模型(DL)模型,可从分子结构的图表中预测材料特性。训练针对分子设计的准确而全面的GCNN替代物需要大规模的图形数据集,并且通常是一个耗时的过程。 GPU和分布计算的最新进展为有效降低GCNN培训的计算成本开辟了道路。但是,高性能计算(HPC)资源进行培训的有效利用需要同时优化大型数据管理和可扩展的随机批处理优化技术。在这项工作中,我们专注于在HPC系统上构建GCNN模型,以预测数百万分子的材料特性。我们使用Hydragnn,我们的内部库进行大规模GCNN培训,利用Pytorch中的分布数据并行性。我们使用Adios(高性能数据管理框架)来有效存储和读取大分子图数据。我们在两个开源大规模图数据集上进行并行训练,以构建一个称为Homo-Lumo Gap的重要量子属性的GCNN预测指标。我们衡量在两个DOE超级计算机上的方法的可伸缩性,准确性和收敛性:橡树岭领导力计算设施(OLCF)的峰会超级计算机和国家能源研究科学计算中心(NERSC)的Perlmutter系统。我们通过HydragnN表示我们的实验结果,显示I)与常规方法相比,将数据加载时间降低了4.2倍,而II)线性缩放性能在峰会和Perlmutter上均可训练高达1,024 GPU。
translated by 谷歌翻译
Data compression is becoming critical for storing scientific data because many scientific applications need to store large amounts of data and post process this data for scientific discovery. Unlike image and video compression algorithms that limit errors to primary data, scientists require compression techniques that accurately preserve derived quantities of interest (QoIs). This paper presents a physics-informed compression technique implemented as an end-to-end, scalable, GPU-based pipeline for data compression that addresses this requirement. Our hybrid compression technique combines machine learning techniques and standard compression methods. Specifically, we combine an autoencoder, an error-bounded lossy compressor to provide guarantees on raw data error, and a constraint satisfaction post-processing step to preserve the QoIs within a minimal error (generally less than floating point error). The effectiveness of the data compression pipeline is demonstrated by compressing nuclear fusion simulation data generated by a large-scale fusion code, XGC, which produces hundreds of terabytes of data in a single day. Our approach works within the ADIOS framework and results in compression by a factor of more than 150 while requiring only a few percent of the computational resources necessary for generating the data, making the overall approach highly effective for practical scenarios.
translated by 谷歌翻译
在本文中,我们提出了一种使用CNN和变压器结构融合以提高图像分类性能的方法。对于CNN,可以很好地提取有关图像上局部区域的信息,但是限制了全局信息的提取。另一方面,变压器在相对全局的提取方面具有优势,但缺点是因为它需要大量的内存来进行本地特征值提取。在图像的情况下,它通过CNN转换为特征映射,每个特征映射的像素都被视为令牌。同时,将图像分为贴片区域,然后与将其视为令牌视图的变压器方法融合在一起。对于令牌与两个不同特征的融合,我们提出了三种方法:(1)具有平行结构的晚令融合,(2)早期令牌融合,(3)逐层中的令牌融合。在使用Imagenet 1K的实验中,提出的方法显示了最佳的分类性能。
translated by 谷歌翻译
与单轴平面成像的2-D超声(US)相比,3-D US成像系统可以沿三个轴平面可视化容积。这允许完整的解剖学观察,这对于妇科(GYN)和产科(OB)应用是有用的。不幸的是,与2-D US相比,3-D US在分辨率中具有固有的限制。例如,在3-D US与3-D机械探针的情况下,例如,图像质量沿着光束方向可比较,但在其他两个轴向图像平面中通常观察到图像质量的显着劣化。为了解决这个问题,我们提出了一种新颖的无监督的深度学习方法来提高3-D US图像质量。特别是,使用{\ EM无与伦比的}高质量的2-D US图像作为参考,我们培训了最近提出的可切换Cyclean架构,以便在3-D中的每个映射平面都可以学习2-D US图像的图像质量。由于可切换架构,我们的网络还可以根据用户偏好提供对图像增强级别的实时控制,这是以用户为中心的扫描仪设置的理想选择。具有临床评估的广泛实验证实,我们的方法提供了显着提高的图像质量,也能成为用户友好的灵活性。
translated by 谷歌翻译
最近,许多研究表明,通过使用多模式的训练预训练目标扩展BERT体系结构,在各种视觉语言多模式任务(例如图像字幕和视觉问题)上进行了令人印象深刻的表现。在这项工作中,我们探讨了医学领域中的一系列多模式表示任务,专门使用放射学图像和非结构化报告。我们提出了医学视觉语言学习者(MEDVILL),该语言学习者采用基于BERT的建筑与一种新型的多模式注意掩盖方案相结合,以最大程度地提高概括性能,以实现视力语言理解任务(诊断分类,医疗图像报告,医学视觉,医疗视觉效果问答)和视觉生成任务(放射学报告生成)。通过统计和严格评估四个下游任务的拟议模型,该模型具有三个X光摄影图像报告数据集(Mimic-CXR,Open-I和VQA-RAD),我们从经验上凭经验证明了MEDVILL的卓越下游任务,包括各种基准,包括任务 - 特定体系结构。源代码可公开可用:https://github.com/supersupermoon/medvill
translated by 谷歌翻译
Many recent works on understanding deep learning try to quantify how much individual data instances influence the optimization and generalization of a model, either by analyzing the behavior of the model during training or by measuring the performance gap of the model when the instance is removed from the dataset. Such approaches reveal characteristics and importance of individual instances, which may provide useful information in diagnosing and improving deep learning. However, most of the existing works on data valuation require actual training of a model, which often demands high-computational cost. In this paper, we provide a training-free data valuation score, called complexity-gap score, which is a data-centric score to quantify the influence of individual instances in generalization of two-layer overparameterized neural networks. The proposed score can quantify irregularity of the instances and measure how much each data instance contributes in the total movement of the network parameters during training. We theoretically analyze and empirically demonstrate the effectiveness of the complexity-gap score in finding 'irregular or mislabeled' data instances, and also provide applications of the score in analyzing datasets and diagnosing training dynamics.
translated by 谷歌翻译
Data-centric AI has shed light on the significance of data within the machine learning (ML) pipeline. Acknowledging its importance, various research and policies are suggested by academia, industry, and government departments. Although the capability of utilizing existing data is essential, the capability to build a dataset has become more important than ever. In consideration of this trend, we propose a "Data Management Operation and Recipes" that will guide the industry regardless of the task or domain. In other words, this paper presents the concept of DMOps derived from real-world experience. By offering a baseline for building data, we want to help the industry streamline its data operation optimally.
translated by 谷歌翻译
Generative AI has matured to a point where large-scale models can generate text that seems indistinguishable from human-written text and remarkably photorealistic images. Automatically measuring how close the distribution of generated data is to the target real data distribution is a key step in diagnosing existing models and developing better models. We present MAUVE, a family of comparison measures between pairs of distributions such as those encountered in the generative modeling of text or images. These scores are statistical summaries of divergence frontiers capturing two types of errors in generative modeling. We explore four approaches to statistically estimate these scores: vector quantization, non-parametric estimation, classifier-based estimation, and parametric Gaussian approximations. We provide statistical bounds for the vector quantization approach. Empirically, we find that the proposed scores paired with a range of $f$-divergences and statistical estimation methods can quantify the gaps between the distributions of human-written text and those of modern neural language models by correlating with human judgments and identifying known properties of the generated texts. We conclude the paper by demonstrating its applications to other AI domains and discussing practical recommendations.
translated by 谷歌翻译
In robotics and computer vision communities, extensive studies have been widely conducted regarding surveillance tasks, including human detection, tracking, and motion recognition with a camera. Additionally, deep learning algorithms are widely utilized in the aforementioned tasks as in other computer vision tasks. Existing public datasets are insufficient to develop learning-based methods that handle various surveillance for outdoor and extreme situations such as harsh weather and low illuminance conditions. Therefore, we introduce a new large-scale outdoor surveillance dataset named eXtremely large-scale Multi-modAl Sensor dataset (X-MAS) containing more than 500,000 image pairs and the first-person view data annotated by well-trained annotators. Moreover, a single pair contains multi-modal data (e.g. an IR image, an RGB image, a thermal image, a depth image, and a LiDAR scan). This is the first large-scale first-person view outdoor multi-modal dataset focusing on surveillance tasks to the best of our knowledge. We present an overview of the proposed dataset with statistics and present methods of exploiting our dataset with deep learning-based algorithms. The latest information on the dataset and our study are available at https://github.com/lge-robot-navi, and the dataset will be available for download through a server.
translated by 谷歌翻译
Efficient exploration strategy is one of essential issues in cooperative multi-agent reinforcement learning (MARL) algorithms requiring complex coordination. In this study, we introduce a new exploration method with the strangeness that can be easily incorporated into any centralized training and decentralized execution (CTDE)-based MARL algorithms. The strangeness refers to the degree of unfamiliarity of the observations that an agent visits. In order to give the observation strangeness a global perspective, it is also augmented with the the degree of unfamiliarity of the visited entire state. The exploration bonus is obtained from the strangeness and the proposed exploration method is not much affected by stochastic transitions commonly observed in MARL tasks. To prevent a high exploration bonus from making the MARL training insensitive to extrinsic rewards, we also propose a separate action-value function trained by both extrinsic reward and exploration bonus, on which a behavioral policy to generate transitions is designed based. It makes the CTDE-based MARL algorithms more stable when they are used with an exploration method. Through a comparative evaluation in didactic examples and the StarCraft Multi-Agent Challenge, we show that the proposed exploration method achieves significant performance improvement in the CTDE-based MARL algorithms.
translated by 谷歌翻译